skip to main content


Search for: All records

Creators/Authors contains: "Broido, David"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Materials that rectify light into current in their bulk are desired for optoelectronic applications. In Weyl semimetals that break inversion symmetry, bulk photocurrents may arise due to nonlinear optical processes that are enhanced near the Weyl nodes. However, the photoresponse of these materials is commonly studied by scanning photocurrent microscopy, which convolves the effects of photocurrent generation and collection. Here we directly image the photocurrent flow inside the type-II Weyl semimetals WTe2 and TaIrTe4 using high-sensitivity quantum magnetometry with nitrogen-vacancy centre spins. We elucidate a mechanism for bulk photocurrent generation, which we call the anisotropic photothermoelectric effect, where unequal thermopowers along different crystal axes drive intricate circulations of photocurrent around the photoexcitation. Using overlapping scanning photocurrent microscopy and magnetic imaging at the interior and edges of the sample, we visualize how the anisotropic photothermoelectric effect stimulates the long-range photocurrent collected in our WTe2 and TaIrTe4 devices through the Shockley–Ramo mechanism. Our results highlight a widely relevant source of current flow and will inspire photodetectors that utilize bulk materials with thermoelectric anisotropy. 
    more » « less
  2. Materials with high thermal conductivity (κ) are of technological importance and fundamental interest. We grew cubic boron nitride (cBN) crystals with controlled abundance of boron isotopes and measured κ greater than 1600 watts per meter-kelvin at room temperature in samples with enriched10B or11B. In comparison, we found that the isotope enhancement of κ is considerably lower for boron phosphide and boron arsenide as the identical isotopic mass disorder becomes increasingly invisible to phonons. The ultrahigh κ in conjunction with its wide bandgap (6.2 electron volts) makes cBN a promising material for microelectronics thermal management, high-power electronics, and optoelectronics applications.

     
    more » « less